Enriching Corporate Analytics using Data's Shape

A new take on unsupervised learning tasks using Topological Data Analysis and Graph Learning.

Today's Talk

- Our work on Coal Phaseout
- 2 Quick intro to Graph Learning and Topology
- 3 Overview of our method
- 4 Other applications of interest

The Coal Problem

- Significant environmental, financial, and public health benefits associated with phasing out coal.
- Should be easy, right?
- Coal phaseout is complex and multifaceted. Few historical examples of coal plants that have been labeled as either "good" or "bad" to retire.
- Challenging to train machine learning models due to this lack of labeled data.

Data Collection

Data Sources

- US EIA
- US EPA
- Clean Air Task Force
- Yale Program on Climate Change Communications
- Energy Innovation
- Rocky Mountain Institute
- Sierra Club

Why can't **standard** analysis tools address the Coal Problem?

The Curse of Dimensionality

- As the dimension increases, the number of data points needed to guarantee reliable results grows exponentially.
- Sparse data causes standard statistical and machine learning techniques break down.
- In the absence of a rich, well-labeled training set, many deep learning frameworks fail to perform well.
- How can we extract insights from datasets and problems that suffer from the curse of dimensionality?

"While simple arguments reveal the impossibility of learning from generic high-dimensional data as a result of the curse of dimensionality, there is hope for physically-structured data, where we can employ two fundamental principles: **symmetry** and **scale separation**."

– Micheal Bronstein [1]

DeepMind Professor of Al, Oxford University (former) Head of Graph Learning Research, Twitter

Our Solution

We combine methods from:

- 1 Graph Learning
- 2 Topology

Curvature Filtrations for Graph Generative Model Evaluation (2023) [3]. **Authors:** Joshua Southern, Jeremy Wayland, Michael Bronstein, Bastian Rieck.

What is a Graph?

A graph G = (N, E).

Graph Learning

Fake News Detection (2019)

- Bronstein and co-authors use *graph learning* to identify fake news with exceptional accuracy (~ 93%).
- They were also able to extract meaningful insights about Twitter's users and assign users a *credibility* rating.
- Their company **Fabula AI** was acquired by Twitter in 2020 to fight the spread of misinformation.

Graph Learning

News Spreading across Twitter

A single news story spreading on a subset of the Twitter social network, modeled as a graph. [2].

Light blue edges are social connections between users. Red nodes are users who tweeted the ur/ directly. Red edges represent the spread of the ur/ through the network.

Graph Learning

- How do we generate *informative* graph models of our data?
- What is the right tool for dealing with even sparser data?
- What happens in the case that we do not have well-defined labels?

Topology has exactly the properties we are looking for to address these questions!

What is Topology?

Reality is often messy...

Krv Analytics 12/26

Why Topological Data Analysis (TDA)?

- 1 Works with sparse data
- 2 Does not require labeled data
- 3 Captures structure of data at multiple scales
- 4 Avoids inductive biases
- **5** Interpretable and Transparent
- 6 Known Failure Modes

Coal Mapper

• To suit the needs of our collaborators, we developed a *topological clustering algorithm*, that we call the **Coal Mapper**.

An example Graph Model of US Coal Plants

Krv Analytics 14/26

How does it work?

- Search for *shape* and *symmetries* in your data at multiple scales.
- 2 Generate graph models that capture this shape.
- 3 Identify important *scales* and select informative models.
- 4 Extract informative groupings.

Addressing the Coal Problem

How do we extract insights from our Graph Models?

Understanding Group Composition

Analyzing Group Key Features

Analyzing Group Key Features

Geographic Layout

Geographic Layout

Our Codebase

Interfacing with Existing Frameworks

- 1 Can be integrated into standard prediction architectures
- 2 Complementary to Deep Learning and Large Language Models

Looking Toward Industry

What other fields could benefit from our approach?

- Finance Sector \rightarrow Companies
- Healthcare \rightarrow Patients
- Environmental Policy \rightarrow Coral Reef Destruction

What can we do for you?

